Optimisation of grain refinement in a melting operation based on primary metal

John Courtenay of MQP Limited recently presented a paper at the TMS Conference in San Antonio, Texas, USA dealing with optimisation of the industrial aluminium alloy grain refining process.

It is now possible to study and quantify the various factors affecting grain refinement including melt nucleation level, growth restriction factors, grain refiner recovery, in line treatments and potency and variation in grain refiners with the use of Opticast technology.  

The Opticast system (1) is proving to be an invaluable tool in carrying out assessment and control of grain refinement practice in industrial casthouses by using data generated from sampling the melt in real time. The system allows rapid and reliable results to be generated so that accurate conclusions can be quickly made regarding implementation of optimised grain refining practice.

Grain refiner variability has been found to be an important consideration factor in achieving a fully optimised practice and this has led to development of a consistently potent grain refiner, Optifine. In the TMS paper the results from two casthouses where optimisation was carried out and Optifine introduced were described. In this short article one of these, the Eti Alüminyum operation at Seydisehir, Turkey, is the focus of attention.

Eti Alüminyum

Production at the Eti plant is around 65,000 tpy of 6063 billet. Casting equipment comprises two 45 MT holders, an Alpur inline degasser, a filter box with 40ppi ceramic foam filters and a Waghstaff billet casting table. The majority of the furnace charges contain a large proportion of primary metal, supplied by the nearby smelter, and the current grain refinement is with 2.2 kg/t of standard commercial 5/1 TiBAl. The first objective of the optimisation work was to demonstrate the ability to achieve a minimum of a 50 per cent reduction in grain refiner addition with Optifine. A second target was to reduce consumption by 70 per cent. This would mean initially reducing addition rates from 2.2 kg/t down to 1.1 kg/t and then to 0.65 kg/t.

Optimisation trials

In an initial trial, samples of un-grain refined metal were taken from the furnace spout and Opticast crucible tests carried out with standard 5/1 grain refiner and Optifine added at 0.5 kg/t, 1.0 kg/t and 2.0 kg/t. The aim was to establish the current acceptable launder grain size and confirm that it was safe to reduce current grain refiner addition rate to 1.1 kg/t with Optifine. The resultant Opticast curves in figure 1 revealed a large difference in efficiency between the standard commercial grain refiner mounted at the casting line (blue line) and Optifine (red line). The horizontal hatched line indicates the grain size obtained in samples taken in the launder when the standard Ti BAl grain refiner was used at an addition rate of 2.2 kg/t. The average grain size was 146 µm. The red curve for Optifine additions indicates that the same grain size can be achieved with an addition of only 0.5 kg/t of Optifine.

Based on these results it was decided to carry out a second trial with Optifine at an addition rate of 1.1 kg/t. The results from this showed an average grain size measured at 135 µm in the Opticast samples which confirmed the prediction made in the first trial. After homogenisation, a billet slice from this trial was examined and the grain structure is shown in figure 2.

It was then decided to produce five production casts with a 50 per cent reduction in the addition rate down to 1.1 kg/t. The normal practice at Eti is to assure a titanium level of 50 ppm in the furnace before casting in order to assure a high enough growth restriction. The base level of titanium in charges may vary from as low as 5 ppm to 100 ppm in the furnace, depending on the ratio between pure metal and scrap. This means that if the analysis shows less than 50 ppm, Ti waffles are added to increase the concentration to 50 ppm. In two of the production casts, the titanium content was increased by Ti addition, but in the other three casts no titanium additions were made as a means of evaluating if Optifine could perform acceptably even if the growth restriction conditions were not optimised. The results from the tests are shown in figure 3.

The Opticast results indicate clearly that having an adequate Ti level is essential in order to provide conditions to ensure a small grain size. The two casts without Ti addition had extraordinary low Ti levels, about 2 ppm, which resulted in grain sizes around 210 µm.
TC800 DIE OVENS
Available in Single, Twin & Quad Cell Forms

OVER 100 OVENS SOLD LAST YEAR WORLDWIDE
TC800 TWIN CELL
FROM €9,999.00

EN ISO: 9001
2008 QUALITY ASSURED
INCREASED PRODUCTIVITY
INDUSTRY LEADING FUEL EFFICIENCY
TAILORED ENGINEERING SOLUTIONS

Halesfield 2, Telford, Shropshire TF7 4QH UK
T +44 (0) 1952 684488 · F +44 (0) 1952 684489
www.thermserve.com
Molten metal treatment

Alkali and alkaline earth metals are generally considered to be undesirable elements in aluminium production. Even in trace quantities these metals degrade the properties of most aluminium alloys, causing cracking and corrosion. The two most troublesome elements, sodium and calcium, are often removed in the casthouse by the direct injection of chlorine gas to molten aluminium in the holding furnace.

Increased emphasis on health, safety and the environment has accelerated efforts to find a substitute for the extremely hazardous and highly corrosive chlorine gas, and at Rio Tinto Alcan's ISAL smelter its use was eliminated a number of years ago by implementation of the following process.

Sodium and calcium removal

In the early 1980s a system of metal treatment in ladles was developed and subsequently commercialised by Alcan. The process uses aluminium fluoride (AlF₃) as a flux, added directly into a vortex generated in the molten aluminium by a rotor. This technology has been further developed in a co-operative project between Rio Tinto Alcan and VHE. A test rig was designed and fabricated by VHE, and was then erected at the old metal treatment station at Rio Tinto Alcan Iceland's Straumsvik smelter, ISAL. Experimental work demonstrated that very low sodium levels could be achieved.

Following successful completion of the development work, Rio Tinto Alcan specified a full scale metal cleaning project to be built at ISAL, comprising four stations each equipped with twin rotor vortex generators and injecting aluminium fluoride with argon gas. All stations are fed from an elevated silo using a dense flow system. Gaseous discharges are vented to the existing dry scrubbers. Key figures are (for each station):

- **Ladle capacity**: 6.7 tonnes
- **Treatment time**: about 10 minutes
- **Overall cycle time**: about 12 minutes
- **Typical Na removal**: 95%
- **Typical Ca removal**: 85%
- **Rotor speed**: 300 rpm
- **Power consumption**: 9 kW maximum

The results at Eti Aluminium have confirmed that although in the case of smelter metal the growth restriction factor is substantially less than in a remelt, this can be successfully managed by controlling titanium levels to 0.005 per cent. Optifine was successfully used for casting of 6063 billets on a trial basis with the addition rate being reduced by 70 per cent compared to standard practice.

Here and elsewhere the Opticast methodology is proving to be an invaluable tool in carrying out optimisation and control of grain refinement practice in casthouses regardless of whether furnace charges are based on remelt aluminium or pure aluminium.

Readers Reply No.110

**Acknowledgement**

MQP is grateful to Eti Alüminyum for permission to use the results of work carried out at their Seydis-ehir plant.

**Author**: Michael Bryant, MQP Ltd, UK

Bibliography

1 “The Opticast system is truly innovative”, Aluminium Times, Vol 15 No 1 (Jan/Feb 2013), p40.